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Introduction

Paul Samuelson once stated that “macroeconomics, even with all of our computers and with all of
our information is not an exact science and is incapable of being an exact science”. Perhaps this quote
captures the view that the field of macroeconomics, the study of aggregate behaviour of the economy,
is full of loose ends and inconsistent statements that make it difficult for economists to agree on
anything.

While there is truth to the fact that there are plenty of disagreements among macroeconomists,
we believe such a negative view is unwarranted. Since the birth of macroeconomics as a discipline in
the 1930s, in spite of all the uncertainties, inconsistencies, and crises, macroeconomic performance
around the world has been strong. More recently, dramatic shocks, such as the Great Financial Crisis
or the Covid pandemic, have been managed – not without cost, but with effective damage control.
There is much to celebrate in the field of macroeconomics.

Macroeconomics was born under the pain of both U.S. and UK’s protracted recession of the
1930s. Until then, economics had dealt with markets, efficiency, trade, and incentives, but it was never
thought that there was place for a large and systematic breakdown of markets. High and persistent
unemployment in the U.S. required a different approach.

The main distinctive feature to be explained was the large disequilibrium in the labour market.
How could it be that a massive number of people wanted to work, but could not find a job? This
led to the idea of the possibility of aggregate demand shortfalls – and thus of the potential role for
government to prop it up, and, in doing so, restore economic normalcy. “Have people dig a hole and
fill them up if necessary” is the oft-quoted phrase by Keynes. In modern economic jargon, increase
aggregate demand to move the equilibrium of the economy to a higher level of output.

Thus, an active approach to fiscal and monetary policy developed, entrusting policy makers with
the role of moderating the business cycle. The relationship was enshrined in the so-called Phillips
curve, a relationship that suggested a stable tradeoff between output and inflation. If so, governments
simply had to choose their preferred spot on that tradeoff.

Then things changed. Higher inflation in the 60s and 70s, challenged the view of a stable tradeoff
between output and inflation. In fact, inflation increased with no gain in output, the age of stagflation
had arrived. What had changed?

The answer had to do with the role of expectations in macroeconomics.1
The stable relationship between output and inflation required static expectations. People did not

expect inflation, then the government found it was in its interest to generate a bit of inflation – but
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that meant people were always wrong! As they started anticipating the inflation, then its effect on
employment faded away, and the effectiveness of macro policy had gone stale.

The rational expectations revolution in macroeconomics, initiated in the 1970s, imposed the con-
straint that a goodmacromodel should allow agents in themodel to understand it and act accordingly.
This was not only a theoretical purism. It was needed to explain what was actually happening in the
real world. The methodological change took hold very quickly and was embraced by the profession.
As a working assumption, it is a ubiquitous feature of macroeconomics up to today.

Then an additional challenge to the world of active macroeconomic policy came about. In the
early 1980s, some macroeconomists started the “real business cycles” approach: they studied the neo-
classical growth model – that is, a model of optimal capital accumulation – but added to it occa-
sional productivity shocks. The result was a simulated economy that, they argued, resembled on many
dimensions themovements of the business cycle.This was a dramatic finding because it suggested that
business cycles could actually be the result of optimal responses by rational economic agents, thereby
eschewing the need for a stabilising policy response. What is more, active fiscal or monetary policy
were not merely ineffective, as initially argued by the rational expectations view: they could actually
be harmful.

This was the state of the discussion when a group of economists tackled the task of building a
framework that recovered some of the features of the old Keynesian activism, but in amodel with fully
rational agents. They modelled price formation and introduced market structures that departed from
a perfectly competitive allocation. They adhered strictly to the assumptions of rational expectations
and optimisation, which had the added advantage of allowing for explicit welfare analyses. Thus, the
New Keynesian approach was built. It also allowed for shocks, of course, and evolved into what is now
known as dynamic stochastic general equilibrium (DSGE) models.

Macroeconomic policymaking evolved along those lines. Nowadays, DSGEmodels are used by any
respectable central bank. Furthermore, because this type of model provides flexibility in the degree
of price rigidities and market imperfections, it comprises a comprehensive framework nesting the
different views about how individual markets operate, going all the way from the real business cycle
approach to specifications with ample rigidities.

But the bottom line is that macroeconomics speaks with a common language. While differences
in world views and policy preferences remain, having a common framework is a great achievement.
It allows discussions to be framed around the parameters of a model (and whether they match the
empirical evidence) – and such discussions can be more productive than those that swirl around the
philosophical underpinnings of one’s policy orientations.

This book, to a large extent, follows this script, covering the different views – and very importantly,
the tools needed to speak the language of modern macroeconomic policymaking – in what we believe
is an accessible manner. That language is that of dynamic policy problems.

We start with the Neoclassical Growth Model – a framework to think about capital accumula-
tion through the lens of optimal consumption choices – which constitutes the basic grammar of that
language of modern macroeconomics. It also allows us to spend the first half of the book studying
economic growth – arguably the most important issue in macroeconomics, and one that, in recent
decades, has taken up as much attention as the topic of business cycles. The study of growth will take
us through the discussion of factor accumulation, productivity growth, the optimality of both the
capital stock and the growth rate, and empirical work in trying to understand the proximate and fun-
damental causes of growth. In that process, we also develop a second canonical model in modern
macroeconomics: the overlapping generations model. This lets us revisit some of the issues around
capital accumulation and long-run growth, as well as study key policy issues, such as the design of
pension systems.
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We thenmove to discuss issues of consumption and investment.These are the keymacroeconomic
aggregates, of course, and their study allows us to explore the power of the dynamic tools we developed
in the first part of the book. They also let us introduce the role of uncertainty and expectations, as well
as the connections between macroeconomics and finance.

Then, in the second half of the book, we turn to the study of business cycle fluctuations, and what
policy can and should do about it. We start with the real business cycle approach, as it is based on the
neoclassical growth model. Then we turn to the Keynesian approach, starting from the basic IS-LM
model, familiar to anyone with an undergraduate exposure to macroeconomics, but then showing
how its modern version emerged: first, with the challenge of incorporating rational expectations, and
thenwith the fundamentals of the NewKeynesian approach. Only then, we present the canonical New
Keynesian framework.

Once we’ve covered all this material, we discuss the scope and effectiveness of fiscal policy.We also
go over what optimal fiscal policy would look like, as well as some of the reasons for why in practice it
departs from those prescriptions. We then move to discuss monetary policy: the relationship between
money and prices, the debate on rules vs discretion, and the consensus that arose prior to the 2008
financial crisis and the Great Recession. We then cover the post-crisis development of quantitative
easing, as well as the constraints imposed by the zero lower bound on nominal interest rates.We finish
off by discussing some current topics that have been influencing the thinking of policymakers on the
fiscal and monetary dimensions: secular stagnation, the fiscal theory of the price level, and the role of
asset-price bubbles and how policy should deal with them.

As you can see from this whirlwind tour, the book covers a lot of material. Yet, it has a clear meth-
odological structure.We develop the basic tools in the first part of the book, making clear exactly what
we need at each step. All you need is a basic knowledge of calculus, differential equations, and some
linear algebra – and you can consult the mathematical appendix for the basics on the tools we intro-
duce and use in the book. Throughout, we make sure to introduce the tools not for their own sake, but
in the context of studying policy-relevant issues and helping develop a framework for thinking about
dynamic policy problems. We then study a range of policy issues, using those tools to bring you to
the forefront of macroeconomic policy discussions. At the very end, you will also find two appendices
for those interested in tackling the challenge of running and simulating their own macroeconomic
models.

All in all, Samuelson was right that macroeconomics cannot be an exact science. Still, there is a
heck of a lot to learn, enjoy and discover – and this, we hope, will help you become an informed
participant in exciting macroeconomic policy debates. Enjoy!

Note
1 Surprisingly, the answer came from the most unexpected quarter: the study of agricultural markets.
As early as 1960 John Muth was studying the cobweb model, a standard model in agricultural eco-
nomics. In this model the farmers look at the harvest price to decide how much they plant, but then
this provides a supply the following year which is inconsistent with this price. For example a bad
harvest implies a high price, a high price implies lots of planting, a big harvest next year and thus a
low price! The low price motivates less planting, but then the small harvest leads to a high price the
following year! In this model, farmers were systematically wrong, and kept being wrong all the time.
This is nonsense, argued Muth. Not only should they learn, they know the market and they should
plant the equilibrium price, namely the price that induces the amount of planting that implies that
next year that will be the price. There are no cycles, no mistakes, the market equilibrium holds from
day one! Transferred to macroeconomic policy, something similar was happening.
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Growth theory preliminaries

2.1 | Why do we care about growth?

It is hard to put it better than Nobel laureate Robert Lucas did as he mused on the importance
of the study of economic growth for macroeconomists and for anyone interested in economic
development.1

‘The diversity across countries in measured per capita income levels is literally too great to
be believed. (...) Rates of growth of real per capita GNP are also diverse, even over sustained
periods. For 1960–80 we observe, for example: India, 1.4% per year; Egypt, 3.4%; South Korea,
7.0%; Japan, 7.1%; the United States, 2.3%; the industrial economies averaged 3.6%. (..) An
Indian will, on average, be twice as well off as his grandfather; a Korean 32 times. (...) I do not
see how one can look at figures like these without seeing them as representing possibilities.
Is there some action a government of India could take that would lead the Indian economy
to grow like Indonesia’s or Egypt’s? If so, what, exactly? If not, what is it about the ‘nature of
India’ that makes it so? The consequences for human welfare involved in questions like these are
simply staggering: Once one starts to think about them, it is hard to think about anything else.’

Lucas Jr. (1988) (emphasis added)
While it is common to think about growth today as being somehow natural, even expected – in fact,
if world growth falls from 3.5 to 3.2%, it is perceived as a big crisis – it is worthwhile to acknowl-
edge that this was not always the case. Pretty much until the end of the 18th century growth was
quite low, if it happened at all. In fact, it was so low that people could not see it during their life-
times. They lived in the same world as their parents and grandparents. For many years it seemed
that growth was actually behind as people contemplated the feats of antiquity without understand-
ing how they could have been accomplished. Then, towards the turn of the 18th century, as shown in
Figure 2.1 something happened that created explosive economic growth as the world had never seen
before. Understanding this transition will be the purpose of Chapter 10. Since then, growth has
become the norm. This is the reason the first half of this book, in fact up to Chapter 10, will deal
with understanding growth. As we proceed we will ask about the determinants of capital accumu-
lation (Chapters 2 through 5, as well as 8 and 9), and discuss the process of technological progress
(Chapter 6). Institutional factors will be addressed in Chapter 7.The growth process raisesmany inter-
esting questions: should we expect this growth to continue? Should we expect it eventually to decel-
erate? Or, on the contrary, will it accelerate without bound?
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Figure 2.1 The evolution of the world GDP per capita over the years 1–2008
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Figure 2.2 Log GDP per capita of selected countries (1820–2018)
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But the fundamental point of Lucas’s quote is to realise that the mind-boggling differences in
income per capita across countries are to a large extent due to differences in growth rates over time;
and the power of exponential growth means that even relatively small differences in the latter will
build into huge differences in the former. Figures 2.2 and 2.3 make this point. The richest countries
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Figure 2.3 Log GDP per capita of selected countries (1960–2018)
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have been growing steadily over the last two centuries, and some countries have managed to converge
to their income levels. Some of the performances are really stellar. Figure 2.2 shows how South Korea,
with an income level that was 16% of that of the U.S. in 1940, managed to catch up in just a few dec-
ades. Today it’s income is 68.5% compared to the U.S. Likewise, Spain’s income in 1950 was 23% that
of the U.S. Today it is 57%. At the same time other countries lagged. Argentina for example dropped
from an income level that was 57% of U.S. income at the turn of the century to 33.5% today.

Figure 2.3 shows some diversity during recent times. The spectacular performances of Botswana,
Singapore or, more recently, of China and India, contrast with the stagnation of Guatemala, Argentina
or Venezuela. In 1960 the income of the average Motswana (as someone from Botswana is called) was
only 6% as rich as the average Venezuelan. In 2018 he or she was 48% richer!

These are crucial reasons why we will spend about the initial half of this book in understanding
growth. But those are not the only reasons! You may be aware that macroeconomists disagree on a lot
of things; however, the issue of economic growth is one where there is much more of a consensus. It is
thus helpful to start off on this relatively more solid footing. Even more importantly, the study of eco-
nomic growth brings to the forefront two key ingredients of essentially all of macroeconomic analysis:
general equilibrium and dynamics. First, understanding the behaviour of an entire economy requires
thinking about how different markets interact and affect one another, which inevitably requires a gen-
eral equilibrium approach. Second, to think seriously about how an economy evolves over time we
must consider how today’s choices affect tomorrow’s – in other words, we must think dynamically! As
such, economic growth is the perfect background upon which to develop the main methodological
tools in macroeconomics: the model of intertemporal optimisation, known as the neoclassical growth
model (NGM for short, also known as the Ramsey model), and the overlapping generations model
(we’ll call it the OLG model). A lot of what we will do later, as we explore different macroeconomic
policy issues, will involve applications of these dynamic general-equilibrium tools that we will learn
in the context of studying economic growth.

So, without further delay, to this we turn.
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2.2 | The Kaldor facts

What are the key stylised facts about growth that ourmodels should try tomatch?That there is growth
in output and capital per worker with relatively stable income shares.

The modern study of economic growth starts in the post-war period and was mostly motivated by the
experience of the developed world. In his classical article (Kaldor 1957), Nicolas Kaldor stated some
basic facts that he observed economic growth seemed to satisfy, at least in those countries.These came
to be known as the Kaldor facts, and the main challenge of growth theory as initially constituted was
to account simultaneously for all these facts. But, what were these Kaldor facts? Here they are:2

1. Output per worker shows continuous growth, with no tendency to fall.
2. The capital/output ratio is nearly constant. (But what is capital?)
3. Capital per worker shows continuous growth (... follows from the other two).
4. The rate of return on capital is nearly constant (real interest rates are flat).
5. Labour and capital receive constant shares of total income.
6. The growth rate of output per worker differs substantially across countries (and over time, we can

add, miracles and disasters).

Most of these facts have aged well. But not all of them. For example, we now know the constancy of
the interest rate is not so when seen from a big historical sweep. In fact, interest rates have been on a
secular downward trend that can be dated back to the 1300’s (Schmelzing 2019). (Of course rates are
way down now, so the question is how much lower can they go?) We will show you the data in a few
pages.

In addition, in recent years, particularly since the early 1980s, the labour share has fallen signific-
antly in most countries and industries. There is much argument in the literature as to the reasons why
(see Karabarbounis and Neiman (2014) for a discussion on this) and the whole debate about income
distribution trends recently spearheaded by Piketty (2014) has to dowith this issue.Wewill come back
to it shortly.

As it turns out Robert Solow established a simple model (Solow 1956) that became the first work-
ing model of economic growth.3 Solow’s contribution became the foundation of the NGM, and the
backbone of modern growth theory, as it seemed to fit the Kaldor facts. Any study of growth must
start with this model, reviewing what it explains – and, just as crucially, what it fails to explain.4

2.3 | The Solow model

We outline and solve the basic Solow model, introducing the key concepts of the neoclassical
production function, the balanced growth path, transitional dynamics, dynamic inefficiency, and
convergence.

Consider an economy with only two inputs: physical capital, K, and labour, L. The production
function is

Y = F (K, L, t) , (2.1)
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whereY is the flow of output produced. Assume output is a homogeneous good that can be consumed,
C, or invested, I, to create new units of physical capital.

Let s be the fraction of output that is saved – that is, the saving rate – so that 1− s is the fraction of
output that is consumed. Note that 0 ≤ s ≤ 1.

Assume that capital depreciates at the constant rate 𝛿 > 0. The net increase in the stock of physical
capital at a point in time equals gross investment less depreciation:

K̇ = I − 𝛿K = s ⋅ F(K, L, t) − 𝛿K, (2.2)

where a dot over a variable, such as K̇, denotes differentiation with respect to time. Equation (2.2)
determines the dynamics of K for a given technology and labour force.

Assume the population equals the labour force, L. It grows at a constant, exogenous rate, L̇∕L =
n ≥ 0.5 If we normalise the number of people at time 0 to 1, then

Lt = ent. (2.3)

where Lt is labour at time t.
If Lt is given from (2.3) and technological progress is absent, then (2.2) determines the time paths

of capital, K, and output, Y. Such behaviour depends crucially on the properties of the production
function,F (⋅). Apparentlyminor differences in assumptions aboutF (⋅) can generate radically different
theories of economic growth.

2.3.1 | The (neoclassical) production function

For now, neglect technological progress. That is, assume that F(⋅) is independent of t. This assumption
will be relaxed later. Then, the production function (2.1) takes the form

Y = F(K, L). (2.4)

Assume also the following three properties are satisfied. First, for all K > 0 and L > 0, F (⋅) exhibits
positive and diminishing marginal products with respect to each input:

𝜕F
𝜕K

> 0, 𝜕2F
𝜕K 2 < 0

𝜕F
𝜕L

> 0, 𝜕2F
𝜕L 2 < 0.

Second, F (⋅) exhibits constant returns to scale:

F (𝜆K, 𝜆L) = 𝜆 ⋅ F(K, L) for all 𝜆 > 0.

Third, the marginal product of capital (or labour) approaches infinity as capital (or labour) goes to 0
and approaches 0 as capital (or labour) goes to infinity:

lim
K→0

𝜕F
𝜕K

= lim
L→0

𝜕F
𝜕L

= ∞,

lim
K→∞

𝜕F
𝜕K

= lim
L→∞

𝜕F
𝜕L

= 0.

These last properties are called Inada conditions.
We will refer to production functions satisfying those three sets of conditions as neoclassical pro-

duction functions.
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The condition of constant returns to scale has the convenient property that output can be
written as

Y = F (K, L) = L ⋅ F (K∕L, 1) = L ⋅ f (k) , (2.5)

where k ≡ K∕L is the capital-labour ratio, and the function f (k) is defined to equal F(k, 1). The pro-
duction function can be written as

y = f (k) , (2.6)

where y ≡ Y∕L is per capita output.
One simple production function that satisfies all of the above and is often thought to provide a

reasonable description of actual economies is the Cobb-Douglas function,

Y = AK𝛼L1−𝛼 , (2.7)

where A > 0 is the level of the technology, and 𝛼 is a constant with 0 < 𝛼 < 1. The Cobb-Douglas
function can be written as

y = Ak𝛼 . (2.8)

Note that f ′(k) = A𝛼k𝛼−1 > 0, f ′′(k) = −A𝛼(1−𝛼)k𝛼−2 < 0, limk→∞ f ′(k) = 0, and limk→0 f ′(k) = ∞.
In short, the Cobb-Douglas specification satisfies the properties of a neoclassical production
function.

2.3.2 | The law of motion of capital

The change in the capital stock over time is given by (2.2). If we divide both sides of this equation by
L, then we get

K̇∕L = s ⋅ f (k) − 𝛿k. (2.9)

The right-hand side contains per capita variables only, but the left-hand side does not. We can write
K̇∕L as a function of k by using the fact that

k̇ ≡ d (K∕L)
dt

= K̇∕L − nk, (2.10)

where n = L̇∕L. If we substitute (2.10) into the expression for K̇∕L then we can rearrange terms to get

k̇ = s ⋅ f (k) − (n + 𝛿) ⋅ k. (2.11)

The term n + 𝛿 on the right-hand side of (2.11) can be thought of as the effective depreciation rate
for the capital/labour ratio, k ≡ K∕L. If the saving rate, s, were 0, then k would decline partly due to
depreciation of K at the rate 𝛿 and partly due to the growth of L at the rate n.

Figure 2.4 shows the workings of (2.11). The upper curve is the production function, f (k). The
term s ⋅ f (k) looks like the production function except for the multiplication by the positive fraction
s. The s ⋅ f (k) curve starts from the origin (because f (0) = 0), has a positive slope (because f ′(k) > 0),
and gets flatter as k rises (because f ′′ (k) < 0). The Inada conditions imply that the s ⋅ f (k) curve is
vertical at k = 0 and becomes perfectly flat as k approaches infinity.The other term in (2.11), (n+𝛿)⋅k,
appears in Figure 2.1 as a straight line from the origin with the positive slope n + 𝛿.
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Figure 2.4 Dynamics in the Solow model
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2.3.3 | Finding a balanced growth path

A balanced growth path (BGP) is a situation in which the various quantities grow at constant rates.6 In
the Solow model, the BGP corresponds to k̇ = 0 in (2.11).7 We find it at the intersection of the s ⋅ f (k)
curve with the (n+ 𝛿) ⋅ k line in Figure 2.4. The corresponding value of k is denoted k∗. Algebraically,
k∗ satisfies the condition:

s ⋅ f (k∗) = (n + 𝛿) ⋅ k∗. (2.12)

Since k is constant in the BGP, y and c are also constant at the values y∗ = f(k∗) and c∗ = (1− s) ⋅ f(k∗),
respectively. Hence, in the Solow model, the per capita quantities k, y, and c do not grow in the BGP:
it is a growth model without (long-term) growth!

Now, that’s not quite right: the constancy of the per capita magnitudes means that the levels of
variables – K, Y, and C – grow in the BGP at the rate of population growth, n. In addition, changes in
the level of technology, represented by shifts of the production function, f(⋅); in the saving rate, s; in
the rate of population growth, n; and in the depreciation rate, 𝛿; all have effects on the per capita levels
of the various quantities in the BGP.

We can illustrate the results for the case of a Cobb-Douglas production function. The capital/
labour ratio on the BGP is determined from (2.12) as

k∗ =
( sA

n + 𝛿

) 1
1−𝛼 . (2.13)

Note that, as we saw graphically for a more general production function f (k), k∗ rises with the saving
rate, s, and the level of technology, A, and falls with the rate of population growth, n, and the depre-
ciation rate, 𝛿. Output per capita on the BGP is given by

y∗ = A
1

1−𝛼 ⋅
( s

n + 𝛿

) 𝛼
1−𝛼 . (2.14)

Thus, y∗ is a positive function of s and A and a negative function of n and 𝛿.
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2.3.4 | Transitional dynamics

Moreover, the Solow model does generate growth in the transition to the BGP. To see the implications
in this regard, note that dividing both sides of (2.11) by k implies that the growth rate of k is given by

𝛾k ≡ k̇
k
=

s ⋅ f (k)
k

− (n + 𝛿) . (2.15)

Equation (2.15) says that 𝛾k equals the difference between two terms, s ⋅ f (k) ∕k and (n + 𝛿) which we
plot against k in Figure 2.5. The first term is a downward-sloping curve, which asymptotes to infinity
at k = 0 and approaches 0 as k tends to infinity. The second term is a horizontal line crossing the
vertical axis at n + 𝛿. The vertical distance between the curve and the line equals the growth rate of
capital per person, and the crossing point corresponds to the BGP. Since n+ 𝛿 > 0 and s ⋅ f (k) ∕k falls
monotonically from infinity to 0, the curve and the line intersect once and only once. Hence (except
for the trivial solution k∗ = 0, where capital stays at zero forever), the BGP capital-labour ratio k∗ > 0
exists and is unique.

Note also that output moves according to

ẏ
y
= 𝛼 k̇

k
= 𝛼𝛾k. (2.16)

A formal treatment of dynamics follows. From (2.11) one can calculate

dk̇
dk

= s ⋅ f ′ (k) − (n + 𝛿). (2.17)

We want to study dynamics in the neighbourhood of the BGP, so we evaluate this at k∗:

dk̇
dk

||||k=k∗
= s ⋅ f ′ (k∗) − (n + 𝛿). (2.18)

Figure 2.5 Dynamics in the Solow model again
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The capital stock will converge to its BGP if k̇ > 0 when k < k∗ and k̇ < 0 when k > k∗. Hence, this
requires that dk̇

dk
|||k=k∗

< 0.

In the Cobb-Douglas case the condition is simple. Note that

dk̇
dk

||||k=k∗
= s ⋅ A𝛼

( sA
n + 𝛿

)−1
− (n + 𝛿) = (n + 𝛿) (𝛼 − 1) (2.19)

so that dk̇
dk
|||k=k∗

< 0 requires 𝛼 < 1. That is, reaching the BGP requires diminishing returns.

With diminishing returns, when k is relatively low, the marginal product of capital, f ′ (k), is relat-
ively high. By assumption, households save and invest a constant fraction, s, of this product. Hence,
when k is relatively low, the marginal return to investment, s ⋅ f ′ (k), is relatively high. Capital per
worker, k, effectively depreciates at the constant rate n + 𝛿. Consequently, the growth of capital, k̇, is
also relatively high. In fact, for k < k∗ it is positive. Conversely, for k > k∗ it is negative.

2.3.5 | Policy experiments

Suppose that the economy is initially on a BGP with capital per person k∗1 . Imagine that the govern-
ment then introduces some policy that raises the saving rate permanently from s1 to a higher value s2.
Figure 2.6 shows that the s ⋅ f (k) ∕k schedule shifts to the right. Hence, the intersection with the n+ 𝛿
line also shifts to the right, and the new BGP capital stock, k∗2 , exceeds k∗1 . An increase in the saving
rate generates temporarily positive per capita growth rates. In the long run, the levels of k and y are
permanently higher, but the per capita growth rates return to 0.

A permanent improvement in the level of the technology has similar, temporary effects on the per
capita growth rates. If the production function, f (k), shifts upward in a proportional manner, then the

Figure 2.6 The effects of an increase in the savings rate
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s ⋅ f (k) ∕k curve shifts upward, just as in Figure 2.6. Hence, 𝛾k again becomes positive temporarily. In
the long run, the permanent improvement in technology generates higher levels of k and y, but no
changes in the per capita growth rates.

2.3.6 | Dynamic inefficiency

For a given production function and given values of n and 𝛿, there is a unique BGP value k∗ > 0 for
each value of the saving rate, s. Denote this relation by k∗ (s), with dk∗ (s) ∕ds > 0.The level of per capita
consumption on the BGP is c∗ = (1 − s) ⋅ f

[
k∗ (s)

]
. We know from (2.12) that s ⋅ f (k∗) = (n + 𝛿) ⋅ k∗;

hence we can write an expression for c∗as

c∗ (s) = f
[
k∗ (s)

]
− (n + 𝛿) ⋅ k∗. (2.20)

Figure 2.7 shows the relation between c∗and s that is implied by (2.20). The quantity c∗is increasing in
s for low levels of s and decreasing in s for high values of s. The quantity c∗ attains its maximum when
the derivative vanishes, that is, when

[
f ′ (k∗) − (n + 𝛿)

]
⋅ dk∗∕ds = 0. Since dk∗∕ds > 0, the term in

brackets must equal 0. If we denote the value of k∗ by kg that corresponds to the maximum of c∗, then
the condition that determines kg is

f ′
(
kg
)
= (n + 𝛿) . (2.21)

Thecorresponding savings rate can be denoted as sg, and the associated level of per capita consumption
on the BGP is given by cg = f

(
kg
)
− (n + 𝛿) ⋅ kg and is is called the “golden rule” consumption rate.

If the savings rate is greater than that, then it is possible to increase consumption on the BGP, and
also over the transition path. We refer to such a situation, where everyone could be made better off
by an alternative allocation, as one of dynamic inefficiency. In this case, this dynamic inefficiency is
brought about by oversaving: everyone could be made better off by choosing to save less and consume
more. But this naturally begs the question: why would anyone pass up this opportunity? Shouldn’t we

Figure 2.7 Feasible consumption
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think of a better model of how people make their savings decisions? We will see about that in the next
chapter.

2.3.7 | Absolute and conditional convergence

Equation (2.15) implies that the derivative of 𝛾k with respect to k is negative:

𝜕𝛾k∕𝜕k = s
k

[
f ′ (k) −

f (k)
k

]
< 0. (2.22)

Other things equal, smaller values of k are associatedwith larger values of 𝛾k. Does this resultmean that
economies with lower capital per person tend to grow faster in per capita terms? Is there convergence
across economies?

Wehave seen above that economies that are structurally similar in the sense that they have the same
values of the parameters s, n, and 𝛿 and also have the same production function, F (⋅), have the same
BGP values k∗ and y∗. Imagine that the only difference among the economies is the initial quantity of
capital per person, k (0).Themodel then implies that the less-advanced economies – with lower values
of k (0) and y (0) – have higher growth rates of k. This hypothesis is known as conditional convergence:
within a group of structurally similar economies (i.e. with similar values for s, n, and 𝛿 and production
function, F (⋅)), poorer economies will grow faster and catch up with the richer one. This hypothesis
does seem to match the data – think about how poorer European countries have grown faster, or how
the U.S. South has caught up with the North, over the second half of the 20th century.

An alternative, stronger hypothesis would posit simply that poorer countries would grow faster
without conditioning on any other characteristics of the economies. This is referred to as absolute
convergence, and does not seem to fit the data well.8 Then again, the Solow model does not predict
absolute convergence!

2.4 | Can the model account for income differentials?

We have seen that the Solow model does not have growth in per capita income in the long run. But
can it help us understand income differentials?

We will tackle the empirical evidence on economic growth at a much greater level of detail later on.
However, right now we can ask whether the simple Solow model can account for the differences in
income levels that are observed in the world. According to the World Bank’s calculations, the range
of 2020 PPP income levels vary from $ 138,000 per capita in Qatar or $80,000 in Norway, all the way
down to $ 700 in Burundi. Can the basic Solow model explain this difference in income per capita of
a factor of more than 100 times or even close to 200 times?

In order to tackle this question we start by remembering what output is supposed to be on the
BGP:

y∗ = A
1

1−𝛼

( s
n + 𝛿

) 𝛼
1−𝛼 . (2.23)

Assuming A = 1 and n = 0 this simplifies to:

y∗ =
( s
𝛿

) 𝛼
1−𝛼 . (2.24)
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The ability of the Solow model to explain these large differences in income (in the BGP), as can be
seen from the expressions above, will depend critically on the value of 𝛼.

If

⎧⎪⎪⎨⎪⎪⎩
𝛼 = 1

3
then 𝛼

1−𝛼
= 1∕3

2∕3
= 1

2

𝛼 = 1
2
then 𝛼

1−𝛼
= 1∕2

1∕2
= 1

𝛼 = 2
3
then 𝛼

1−𝛼
= 2∕3

1∕3
= 2.

The standard (rough) estimate for the capital share is 1
3
. Parente and Prescott (2002), however, claim

that the capital share in GDP is much larger than usually accounted for because there are large intan-
gible capital assets. In fact, they argue that the share of investment inGDP is closer to two-thirds rather
than the more traditional one-third. The reasons for the unaccounted investment are (their estimates
of the relevance of each in parenthesis):

1. Repair and maintenance (5% of GDP)
2. R&D (3% of GDP) multiplied by three (i.e. 9% of GDP) to take into account perfecting the

manufacturing process and launching new products (the times three is not well substantiated)
3. Investment in software (3% of GDP)
4. Firms investment in organisation capital. (They think 12% is a good number.)
5. Learning on the job and training (10% of GDP)
6. Schooling (5% of GDP)

They claim all this capital has a return and that it accounts for about 56% of total GDP!
At any rate, using the equation above:

y1

y2
=

(
s1
𝛿

) 𝛼
1−𝛼

(
s2
𝛿

) 𝛼
1−𝛼

=
(

s1
s2

) 𝛼
1−𝛼

, (2.25)

which we can use to estimate income level differences.(
y1
y2
− 1

)
∗ 100

s1
s2

𝛼 = 1
3
𝛼 = 1

2
𝛼 = 2

3
1 0% 0% 0%
1.5 22% 50% 125%
2 41% 100% 300%
3 73% 200% 800%

But even the 800% we get using the two-thirds estimate seems to be way too low relative to what we
see in the data.

Alternatively, the differences in income may come from differences in total factor productivity
(TFP), as captured by A. The question is: how large do these differences need to be to explain the
output differentials? Recall from (2.23) that

y∗ = A
1

1−𝛼

( s
n + 𝛿

) 𝛼
1−𝛼 . (2.26)
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So if 𝛼 = 2∕3, as suggested by Parente and Prescott (2002), then A
1

1−𝛼 = A
1

1∕3 = A3. Now, let’s
forget about s, 𝛿, n (for example, by assuming they are the same for all countries), and just focus on
differences in A. Notice that if TFP is 1∕3, of the level in the other country, this indicates that the
income level is then 1∕27.

Parente and Prescott (2002) use this to estimate, for a group of countries, how much productivity
would have to differ (relative to the United States) for us to replicate observed relative incomes over
the period 1950–1988:

Country Relative Income Relative TFP
UK 60% → 86%

Colombia 22% → 64%
Paraguay 16% → 59%
Pakistan 10% → 51%

These numbers appear quite plausible, so the message is that the Solow model requires substantial
cross-country differences in productivity to approximate existing cross-country differences in income.
This begs the question of what makes productivity so different across countries, but we will come back
to this later.

2.5 | The Solow model with exogenous technological change

We have seen that the Solow model does not have growth in per capita income in the long run. But
that changes if we allow for technological change.

Allow now the productivity of factors to change over time. In the Cobb-Douglas case, this means that
A increases over time. For simplicity, suppose that Ȧ∕A = a > 0. Out of the BGP, output then evolves
according to

ẏ
y
= Ȧ

A
+ 𝛼 k̇

k
= a + 𝛼𝛾k. (2.27)

On the BGP, where k is constant,
ẏ
y
= a. (2.28)

This is a strong prediction of the Solowmodel: in the long run, technological change is the only source
of growth in per capita income.

Let’s now embed this improvement in technology or efficiency in workers. We can define labour
input as broader than just bodies, we could call it now human capital defined by

Et = Lt ⋅ e𝜆t = L0 ⋅ e(𝜆+n)t, (2.29)
where E is the amount of labor in efficiency units. The production function is

Y = F
(
Kt,Et

)
. (2.30)

To put it in per capita efficiency terms, we define

k = K
E
. (2.31)
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So

k̇
k
= K̇

K
− Ė

E
=

sy
k
− 𝛿 − n − 𝜆, (2.32)

k̇
k
=

sf (k)
k

− 𝛿 − n − 𝜆, (2.33)

k̇ = sf (k) − (𝛿 + n + 𝜆) k. (2.34)

For k̇ = 0
sf (k)

k
= (𝛿 + n + 𝜆) . (2.35)

On the BGP k̇ = 0, so

K̇
K

= Ė
E
= n + 𝜆 = Ẏ

Y
. (2.36)

But then
.(
Y
L

)
Y
L

= Ẏ
Y
− L̇

L
= 𝜆 (2.37)

Notice that in this equilibrium income per person grows even on the BGP, and this accounts for all
six Kaldor facts.

2.6 | What have we learned?

TheSolowmodel shows that capital accumulation by itself cannot sustain growth in per capita income
in the long run. This is because accumulation runs into diminishing marginal returns. At some point
the capital stock becomes large enough – and its marginal product correspondingly small enough –
that a given savings rate can only provide just enough new capital to replenish ongoing depreci-
ation and increases in labour force. Alternatively, if we introduce exogenous technological change that
increases productivity, we can generate long-run growth in income per capita, but we do not really
explain it. In fact, any differences in long-term growth rates come from exogenous differences in the
rate of technological change – we are not explaining those differences, we are just assuming them! As
a result, nothing within the model tells you what policy can do about growth in the long run.

That said, we do learn a lot about growth in the transition to the long run, about differences in
income levels, and how policy can affect those things. There are clear lessons about: (i) convergence –
the model predicts conditional convergence; (ii) dynamic inefficiency – it is possible to save too much
in this model; and (iii) long-run differences in income – they seem to have a lot to do with differences
in productivity.

Very importantly, the model also points at the directions we can take to try and understand long-
term growth. We can have a better model of savings behaviour: how do we know that individuals will
save what themodel says they will save? And, how does that relate to the issue of dynamic inefficiency?
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We can look at different assumptions about technology: maybe we can escape the shackles of dimin-
ishing returns to accumulation? Or can we think more carefully about how technological progress
comes about?

These are the issues that we will address over the next few chapters.

Notes
1 Lucas’s words hold up very well more than three decades later, in spite of some evidently dated
examples.

2 Oncewe are donewith our study of economic growth, you can check the “newKaldor facts” proposed
by Jones and Romer (2010), which update the basic empirical regularities based on the progress over
the subsequent half-century or so.

3 For those of you who are into the history of economic thought, at the time the framework to study
growth was the so-called Harrod-Domarmodel, due to the independent contributions of (you prob-
ably guessed it...) Harrod (1939) and Domar (1946). It assumed a production function with per-
fect complementarity between labour and capital (“Leontieff”, as it is known to economists), and
predicted that an economy would generate increasing unemployment of either labour or capital,
depending on whether it saved a little or a lot. As it turns out, that was not a good description of the
real world in the post-war period.

4 Solow eventually got a Nobel prize for his trouble, in 1987 – also for his other contributions to the
study of economic growth, to which we will return. An Australian economist, Trevor Swan, also
published an independently developed paper with very similar ideas at about the same time, which
is why sometimes the model is referred to as the Solow-Swan model. He did not get a Nobel prize.

5 We will endogenise population growth in Chapter 10, when discussing unified growth theory.
6 The BGP is often referred to as a “steady state”, borrowing terminology from classical physics. We
have noticed that talk of “steady state” tends to lead students to think of a situation where variables
are not growing at all. The actual definition refers to constant growth rates, and it is only in certain
cases and for certain variables, as we will see, that this constant rate happens to be zero.

7 You should try to show mathematically from (2.11) that, with a neoclassical production function,
the only way we can have a constant growth rate k̇

k
is to have k̇ = 0.

8 Or does it? More recently, Kremer et al. (2021) have argued that there has been a move towards
absolute convergence in the data in the 21st century... Stay tuned!
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C H A P T E R 3

The neoclassical growth model

3.1 | The Ramsey problem

We will solve the optimal savings problem underpinning the Neoclassical Growth Model, and in the
process introduce the tools of dynamic optimisation we will use throughout the book. We will also
encounter, for the first time, the most important equation in macroeconomics: the Euler equation.

ċt
ct

= 𝜎
[
f ′
(
kt
)
− 𝜌

]
We have seen the lessons and shortcomings of the basic Solow model. One of its main assumptions, as
you recall, was that the savings rate was constant. In fact, there was no optimisation involved in that
model, and welfare statements are hard to make in that context. This is, however, a very rudimentary
assumption for an able policy maker who is in possession of the tools of dynamic optimisation. Thus
we tackle here the challenge of setting up an optimal program where savings is chosen to maximise
intertemporal welfare.

As it turns out, British philosopher and mathematician Frank Ramsey, in one of the two seminal
contributions he provided to economics before dying at the age of 26, solved this problem in 1928
(Ramsey (1928)).1 The trouble is, he was so ahead of his time that economists would only catch up in
the 1960s, when David Cass and Tjalling Koopmans independently revived Ramsey’s contribution.2
(That is why thismodel is often referred to either as the Ramseymodel or the Ramsey-Cass-Koopmans
model.) It has since become ubiquitous and, under the grand moniker of Neoclassical Growth Model
(NGM), it is the foremost example of the type of dynamic general equilibrium model upon which the
entire edifice of modern macroeconomics is built.

To make the problem manageable, we will assume that there is one representative household, all of
whosemembers are both consumer and producer, living in a closed economy (wewill lift this assump-
tion in the next chapter). There is one good and no government. Each consumer in the representative
household lives forever, and population growth is n > 0 as before. All quantities in small-case letters
are per capita. Finally, we will look at the problem as solved by a benevolent central planner who max-
imises the welfare of that representative household, and evaluates the utility of future consumption at
a discounted rate.

At this point, it is worth stopping and thinking about the model’s assumptions. By now you
are already used to outrageously unrealistic assumptions, but this may be a little too much. People
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obviously do not live forever, they are not identical, and what’s this business of a benevolent central
planner? Who are they? Why would they discount future consumption? Let us see why we use these
shortcuts:

1. We will look at the central planner’s problem, as opposed to the decentralised equilibrium,
because it is easier and gets us directly to an efficient allocation. We will show that, under
certain conditions, it provides the same results as the decentralised equilibrium. This is due
to the so-called welfare theorems, which you have seen when studying microeconomics, but
which we should perhaps briefly restate here:
a. A competitive equilibrium is Pareto Optimal.
b. All Pareto Optimal allocations can be decentralised as a competitive equilibrium under

some convexity assumptions. Convexity of production sets means that we cannot have
increasing returns to scale. (If we do, we need to depart from competitive markets.)

2. There’s only one household? Certainly this is not very realistic, but it is okay if we think that
typically people react similarly (not necessarily identically) to the parameters of the model.
Specifically, do people respond similarly to an increase in the interest rate? If you think they
do, then the assumption is okay.

3. Do all the people have the same utility function? Are they equal in all senses? Again, as above,
not really. But, we believe they roughly respond similarly to basic tradeoffs. In addition, as
shown by Caselli and Ventura (2000), one can incorporate a lot of sources of heterogeneity
(namely, individuals can have different tastes, skills, initial wealth) and still end up with a rep-
resentative household representation, as long as that heterogeneity has a certain structure. The
assumption also means that we are, for the most part, ignoring distributional concerns, but
that paper also shows that a wide range of distributional dynamics are compatible with that
representation. (We will also raise some points about inequality as we go along.)

4. Do they live infinitely? Certainly not, but it does look like we have some intergenerational
links. Barro (1974) suggests an individual who cares about the utility of their child: u

(
ct
)
+

𝛽V
[
u
(
cchild

)]
. If that is the case, substituting recursively gives an intertemporal utility of the

sort we have posited. And people do think about the future.
5. Whydowe discount future utility? To some extent it is a revealed preference argument: interest

rates are positive and this only makes sense if people value more today’s consumption than
tomorrow’s, which is what we refer to when we speak of discounting the future. On this you
may also want to check Caplin and Leahy (2004), who argue that a utility such as that in (3.1)
imposes a sort of tyranny of the present: past utility carries no weight, whereas future utility is
discounted. But does this make sense from a planner’s point of view? Would this make sense
from the perspective of tomorrow? In fact, Ramsey argued that it was unethical for a central
planner to discount future utility.3

Having said that, let’s go solve the problem.

3.1.1 | The consumer’s problem

The utility function is4

∫
∞

0
u(ct)ente−𝜌tdt, (3.1)

where ct denotes consumption per capita and 𝜌 (> n) is the rate of time preference.5 Assume u′(ct) > 0,
u′′(ct) ≤ 0, and Inada conditions are satisfied.
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3.1.2 | The resource constraint

The resource constraint of the economy is

K̇t = Yt − Ct = F
(
Kt, Lt

)
− Ct, (3.2)

with all variables as defined in the previous chapter. (Notice that for simplicity we assume there is
no depreciation.) In particular, F

(
Kt, Lt

)
is a neoclassical production function – hence neoclassical

growth model. You can think of household production: household members own the capital and they
work for themselves in producing output. Each member of the household inelastically supplies one
unit of labour per unit of time.

This resource constraint is what makes the problem truly dynamic. The capital stock in the future
depends on the choices that are made in the present. As such, the capital stock constitutes what we
call the state variable in our problem: it describes the state of our dynamic system at any given point in
time. The resource constraint is what we call the equation of motion: it characterises the evolution of
the state variable over time.The other key variable, consumption, is what we call the control variable: it
is the one variable that we can directly choose. Note that the control variable is jumpy: we can choose
whatever (feasible) value for it at any givenmoment, so it can vary discontinuously. However, the state
variable is sticky: we cannot change it discontinuously, but only in ways that are consistent with the
equation of motion.

Given the assumption of constant returns to scale, we can express this constraint in per capita
terms, which is more convenient. Dividing (3.2) through by L we get

K̇t
Lt

= F
(
kt, 1

)
− ct = f

(
kt
)
− ct, (3.3)

where f (.) has the usual properties. Recall

K̇t
Lt

= k̇t + nkt. (3.4)

Combining the last two equations yields

k̇t = f
(
kt
)
− nkt − ct, (3.5)

which we can think of as the relevant budget constraint. This is the final shape of the equation of
motion of our dynamic problem, describing how the variable responsible for the dynamic nature of
the problem – in this case the per capita capital stock kt – evolves over time.

3.1.3 | Solution to consumer’s problem

The household’s problem is to maximise (3.1) subject to (3.5) for given k0. If you look at our mathem-
atical appendix, you will learn how to solve this, but it is instructive to walk through the steps here,
as they have intuitive interpretations. You will need to set up the (current value) Hamiltonian for the
problem, as follows:

H = u(ct)ent + 𝜆t
[
f
(
kt
)
− nkt − ct

]
. (3.6)

Recall that c is the control variable (jumpy), and k is the state variable (sticky), but the Hamiltonian
brings to the forefront another variable: 𝜆, the co-state variable. It is the multiplier associated with
the intertemporal budget constraint, analogously to the Lagrange multipliers of static optimisation.
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Just like its Lagrange cousin, the co-state variable has an intuitive economic interpretation: it is the
marginal value as of time t (i.e. the current value) of an additional unit of the state variable (capital, in
this case). It is a (shadow) price, which is also jumpy.

First-order conditions (FOCs) are
𝜕H
𝜕ct

= 0 ⇒ u′(ct)ent − 𝜆t = 0, (3.7)

�̇�t = −𝜕H
𝜕kt

+ 𝜌𝜆t ⇒ �̇�t = −𝜆t
[
f ′
(
kt
)
− n

]
+ 𝜌𝜆t, (3.8)

limt→∞
(
kt𝜆te−𝜌t

)
= 0. (3.9)

What do these optimality conditions mean? First, (3.7) should be familiar from static optimisation:
differentiate with respect to the control variable, and set that equal to zero. It makes sure that, at any
given point in time, the consumer is making the optimal decision – otherwise, she could obviously
do better... The other two are the ones that bring the dynamic aspects of the problem to the forefront.
Equation (3.9) is known as the transversality condition (TVC). It means, intuitively, that the consumer
wants to set the optimal path for consumption such that, in the “end of times” (at infinity, in this case),
they are left with no capital. (As long as capital has a positive value as given by 𝜆, otherwise they don’t
really care...) If that weren’t the case, I would be “dying” with valuable capital, which I could have used
to consume a little more over my lifetime.

Equation (3.8) is the FOC with respect to the state variable, which essentially makes sure that at
any given point in time the consumer is leaving the optimal amount of capital for the future. But how
so? As it stands, it has been obtained mechanically. However, it is much nicer when we derive it purely
from economic intuition. Note that we can rewrite it as follows:

�̇�t
𝜆t

= 𝜌 −
(
f ′
(
kt
)
− n

)
⇒ 𝜌 + n =

�̇�t
𝜆t

+ f ′
(
kt
)
. (3.10)

This is nothing but an arbitrage equation for a typical asset price, where in this case the asset is the
capital stock of the economy. Such arbitrage equations state that the opportunity cost of holding the
asset (𝜌 in this case), equals its rate of return, which comprises the dividend yield ( f ′(kt) − n) plus
whatever capital gain you may get from holding the asset ( �̇�t

𝜆t
). If the opportunity cost were higher

(resp. lower), you would not be in an optimal position: you should hold less (resp. more) of the asset.
We will come back to this intuition over and over again.

3.1.4 | The balanced growth path and the Euler equation

We are ultimately interested in the dynamic behaviour of our control and state variables, ct and kt.
How can we turn our FOCs into a description of that behaviour (preferably one that we can represent
graphically)? We start by taking (3.7) and differentiating both sides with respect to time:

u′′(ct)ċtent + nu′(ct)ent = �̇�t. (3.11)

Divide this by (3.7) and rearrange:

u′′(ct)ct
u′(ct)

ċt
ct

=
�̇�t
𝜆t

− n. (3.12)
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Next, define

𝜎 ≡ −
u′(ct)

u′′(ct)ct
> 0 (3.13)

as the elasticity of intertemporal substitution in consumption.6 Then, (3.12) becomes

ċt
ct

= −𝜎
(
�̇�t
𝜆t

− n
)
. (3.14)

Finally, using (3.10) in (3.14) we obtain
ċt
ct

= 𝜎
[
f ′
(
kt
)
− 𝜌

]
. (3.15)

This dynamic optimality condition is known as the Ramsey rule (or Keynes-Ramsey rule), and in a
more general context it is referred to as the Euler equation. It may well be themost important equation
in all of macroeconomics: it encapsulates the essence of the solution to any problem that trades off
today versus tomorrow.7

But what does it mean intuitively? Think about it in these terms: if the consumer postpones the
enjoyment of one unit of consumption to the next instant, it will be incorporated into the capital
stock, and thus yield an extra f ′(⋅). However, this will be worth less, by a factor of 𝜌. They will only
consume more in the next instant (i.e. ċt

ct
> 0) if the former compensates for the latter, as mediated by

their proclivity to switch consumption over time, which is captured by the elasticity of intertemporal
substitution, 𝜎. Any dynamic problem we will see from now on involves some variation upon this
general theme: the optimal growth rate trades off the rate of return of postponing consumption (i.e.
investment) against the discount rate.

Mathematically speaking, equations (3.5) and (3.15) constitute a system of two differential
equations in two unknowns.These plus the initial condition for capital and the TVC fully characterise
the dynamics of the economy: once we have ct and kt, we can easily solve for any remaining variables
of interest.

To make further progress, let us characterise the BGP of this economy. Setting (3.5) equal to zero
yields

c∗ = f (k∗) − nk∗, (3.16)

which obviously is a hump-shaped function in c, k space. The dynamics of capital can be understood
with reference to this function (Figure 3.1): for any given level of capital, if consumption is higher
(resp. lower) than the BGP level, this means that the capital stock will decrease (resp. increase).

By contrast, setting (3.15) equal to zero yields

f ′ (k∗) = 𝜌. (3.17)

This equation pins down the level of the capital stock on the BGP, and the dynamics of consumption
can be seen in Figure 3.2: for any given level of consumption, if the capital stock is below (resp. above)
its BGP level, then consumption is increasing (resp. decreasing). This is because the marginal product
of capital will be relatively high (resp. low).

Expressions (3.16) and (3.17) together yield the values of consumption and the capital stock (both
per-capita) in the BGP, as shown in Figure 3.3. This already lets us say something important about
the behaviour of this economy. Let’s recall the concept of the golden rule, from our discussion of the
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Figure 3.1 Dynamics of capital
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Figure 3.2 Dynamics of consumption
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Solow model: the maximisation of per-capita consumption on the BGP. From (3.16) we see that this
is tantamount to setting

𝜕c∗
𝜕k∗

= f ′
(
k∗G
)
− n = 0 ⇒ f ′

(
k∗G
)
= n. (3.18)

(Recall here we have assumed the depreciation rate is zero (𝛿 = 0).) If we compare this to (3.17), we
see that the the optimal BGP level of capital per capita is lower than in the golden rule from the Solow
model. (Recall the properties of the neoclassical production function, and that we assume 𝜌 > n.)

Because of this comparison, (3.17) is sometimes known as the modified golden rule. Why does
optimality require that consumption be lower on the BGP thanwhat would be prescribed by the Solow
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Figure 3.3 Steady state
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golden rule? Because future consumption is discounted, it is not optimal to save so much that BGP
consumption is maximised – it is best to consume more along the transition to the BGP. Keep in mind
that it is (3.17), not (3.18), that describes the optimal allocation.The kind of oversaving that is possible
in the Solow model disappears once we consider optimal savings decisions.

Now, you may ask: is it the case then that this type of oversaving is not an issue in practice (or even
just in theory)? Well, we will return to this issue in Chapter 8. For now, we can see how the question
of dynamic efficiency relates to issues of inequality.

3.1.5 | A digression on inequality: Is Piketty right?

It turns out that we can say something about inequality in the context of the NGM, even though the
representative agent framework does not address it directly. Let’s start by noticing that, as in the Solow
model, on the BGP output grows at the rate n of population growth (since capital and output per
worker are constant). In addition, once we solve for the decentralised equilibrium, which we sketch
in Section 2 below, we will see that in that equilibrium we have f ′ (k) = r, where r is the interest rate,
or equivalently, the rate of return on capital.

This means that the condition for dynamic efficiency, which holds in the NGM, can be interpreted
as the r > g condition made famous by Piketty (2014) in his influential Capital in the 21st Century.
The condition r > g is what Piketty calls the “Fundamental Force for Divergence”: an interest rate that
exceeds the growth rate of the economy. In short, he argues that, if r > g holds, then there will be
a tendency for inequality to explode as the returns to capital accumulate faster than overall income
grows. In Piketty’s words:

‘This fundamental inequality (...) will play a crucial role in this book. In a sense, it sums up
the overall logic of my conclusions. When the rate of return on capital significantly exceeds
the growth rate of the economy (...), then it logically follows that inherited wealth grows faster
than output and income.’ (pp. 25–26)
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Does that mean that, were we to explicitly consider inequality in a context akin to the NGM we
would predict it to explode along the BGP? Not so fast. First of all, when taking the model to the data,
we could ask what k is. In particular, k can have a lot of human capital i.e. be the return to labour
mostly, and this may help undo the result. In fact, it could even turn it upside down if human capital
is most of the capital and is evenly distributed in the population. You may also want to see Acemoglu
and Robinson (2015), who have a thorough discussion of this prediction. In particular, they argue
that, in a model with workers and capitalists, modest amounts of social mobility – understood as a
probability that some capitalists may become workers, and vice-versa – will counteract that force for
divergence.

Yet the issue has been such a hot topic in the policy debate that two more comments on this issue
are due.

First, let’s understand better the determinants of labour and income shares. Consider a typical
Cobb-Douglas production function:

Y = AL𝛼K1−𝛼 . (3.19)

With competitive factor markets, the FOC for profit maximisation would give:
w = 𝛼AL𝛼−1K1−𝛼 . (3.20)

Computing the labour share using the equilibrium wage gives:
wL
Y

= 𝛼AL𝛼−1K1−𝛼L
AL𝛼K1−𝛼 = 𝛼, (3.21)

which implies that for a Cobb-Douglas specification, labour and capital shares are constant. More
generally, if the production function is

Y =
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜀−1
𝜀

) 𝜀
𝜀−1 with 𝜀 ∈ [0,∞) , (3.22)

then 𝜀 is the (constant) elasticity of substitution between physical capital and labour. Note that when
𝜀 → ∞, the production function is linear (K and L are perfect substitutes), and one can show that
when 𝜀 → 0 the production function approaches the Leontief technology of fixed proportions, in
which one factor cannot be substituted by the other at all.

From the FOC of profit maximisation we obtain:

w =
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜖−1
𝜖

) 1
𝜀−1 𝛼A (AL)−

1
𝜀 , (3.23)

the labour share is now:

wL
Y

=
𝛼
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜖−1
𝜖

) 1
𝜀−1 A

𝜀−1
𝜀 L− 1

𝜀 L(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜀−1
𝜀

) 𝜀
𝜀−1

= 𝛼
(AL

Y

) 𝜀−1
𝜀 . (3.24)

Notice that as L
Y
⟶ 0, several things can happen to the labour share, and what happens depends on

A and 𝜀∶

If 𝜀 > 1 ⟹ 𝛼
(AL

Y

) 𝜀−1
𝜀 ⟶ 0 (3.25)

If 𝜀 < 1 ⟹ 𝛼
(AL

Y

) 𝜀−1
𝜀 increases. (3.26)




